An Introduction to PCA

Praneeth Netrapalli
Microsoft Research New England

MSR Summer School on Machine Learning, IISc Bangalore
June 2015
Dimensionality reduction

Picture taken from http://cnx.org/resources/269e78e2506cdebdc7f45ca17bb7d83491ce0c644/pca.jpg
An application

Many more applications: solving system of linear equations, computing pseudoinverse, building block of many other algorithms...
Singular Value Decomposition (SVD)

\[M = U \Sigma V^T \]

- \(U, V \) – orthonormal column matrices
- \(\Sigma \) – positive diagonal matrix
- \(\sigma_1 \geq \cdots \geq \sigma_m \) - singular values
- Intuitive repsn. of transformation; unique
- For symmetric matrices, \(U = \pm V \)
- \(U \) eigenvectors of \(MM^T \)
Construction of SVD

\[v_1 = \arg\max_{v: \|v\|_2=1} \|Mv\|_2 \]

\[u_1 = \frac{Mv_1}{\|Mv_1\|_2} \]

\[\sigma_1 = \|Mv_1\|_2 \]

\[v_{i+1} = \arg\max_{v: \|v\|_2=1} \|Mv\|_2 \]

\[v_{i} \perp v_1, \ldots, v_i \]

\[u_{i+1} = \frac{Mv_{i+1}}{\|Mv_{i+1}\|_2} \]

\[\sigma_{i+1} = \|Mv_{i+1}\|_2 \]
Relation to various norms

• Spectral norm/Operator norm: \(\|M\|_2 := \max_{\|v\|_2=1} \|Mv\|_2 = \sigma_1 \)

• Frobenius norm: \(\|M\|_F := \sqrt{\sum_{i,j} M_{ij}^2} = \sqrt{\sum_i \sigma_i^2} \)

• Schatten norms: \(\|M\|_{S_p} := \left(\sum_i \sigma_i^p \right)^{1/p} \)
A simple application

Lemma: If M is square and has orthonormal columns then it also has orthonormal rows.

Proof:

$$
\|Mv\|_2 = 1 \ \forall \ v \in \mathbb{R}^n
$$

$$
\Rightarrow \sigma_i = 1 \ \forall \ i
$$

$$
\Rightarrow \|u^T M\|_2 = 1 \ \forall \ u \in \mathbb{R}^n
$$

\Rightarrow Rows of M are orthonormal.
Eckart-Young-Mirsky Theorem

Let $M = U \Sigma V^T$ be the SVD of M. Then, for any rank-k matrix A, we have:

$$
\|M - A\|_2 \geq \|M - U_k \Sigma_k V_k^T\|_2 = \sigma_{k+1}
$$

$$
\|M - A\|_F \geq \|M - U_k \Sigma_k V_k^T\|_F = \sqrt{\sum_{i=k+1}^{m} \sigma_i^2}
$$
Proof of Eckart-Young-Mirsky Theorem

• Since rank(A) ≤ k, dim(null(A)) ≥ n − k.

• Since dim(null(A)) + dim(range(V_{k+1})) ≥ n − k + k + 1 = n + 1, there exists x ∈ null(A) ∩ range(V_{k+1}).

• \| (M - A)x \|_2^2 = \sum_{i=1}^{k+1} \sigma_i^2 < x, v_i >^2 \geq \sigma_{k+1}^2 \sum_{i=1}^{k+1} < x, v_i >^2 = \sigma_{k+1}^2
Proof of Eckart-Young-Mirsky Theorem

Frobenius norm for rank-1 case

$$\min_{u,v} \| M - uv^T \|_F^2$$

Stationary points:

$$(M - uv^T)v = 0$$
$$u^T(M - uv^T) = 0$$

$$\Rightarrow u, v$$ are singular vectors of M

Optimality $$\Rightarrow u, v$$ are top singular vectors!
Perturbation questions

It is often the case that data is corrupted, and we observe

\[M = L + N \]

where \(L \) is the desired matrix and \(N \) is noise.

Would like to answer questions such as

- How large is \(\sigma_k(M) - \sigma_k(L) \)?
- How far are \(u_k(M) \) and \(u_k(L) \)?
Perturbation inequalities

\[M = L + N \]

• Weyl’s inequalities

\[|\sigma_k(M) - \sigma_k(L)| \leq \|N\|_2 \]

• Davis Kahan theorem

\[\left\| (U_k(M))_L^T U_k(L) \right\|_2 \leq \frac{\|N\|_2}{|\sigma_k(L) - \sigma_{k+1}(L)|} \]
An exercise

• Suppose L is a rank- k matrix and $M = L + N$. Then,

$$\|L - P_k(M)\|_2 \leq 2\|N\|_2.$$

Proof: $\|L - P_k(M)\|_2 \leq \|M - L\|_2 + \|M - P_k(M)\|_2 \leq 2\|M - L\|_2 \leq 2\|N\|_2.$

A similar argument gives $\|L - P_k(M)\|_F \leq 2\|N\|_F$.
Another exercise

* Suppose L is a rank- \(k \) matrix and \(M = L + N \). Then,

\[
\|L - P_k(M)\|_F \leq 2\sqrt{2k} \|N\|_2.
\]

Proof: Let \(U \) be the (at most \(2k \)) left singular vectors of \(L - P_k(M) \).

\[
\|L - P_k(M)\|_F^2 = Tr \left(U^T (L - P_k(M))(L - P_k(M))^T U \right)
\]

Write \(L - P_k(M) = L - M + M - P_k(M) \), and use

\[
Tr(U^T AB^T U) \leq 2k \|A\|_2 \|B\|_2
\]
Summary

• SVD/PCA is a fundamental tool in many settings

• Perturbation analysis is crucial for these purposes

• Tight results known for perturbation in $\| \cdot \|_2$ and $\| \cdot \|_F$ norms

• Coming up later: perturbation bounds in $\| \cdot \|_\infty$ norm
References

• Linear Algebra Done Right, by Sheldon Axler

• Matrix Computations, by Gene Golub and Charles Van Loan

• https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/